

 Navigation

 	
 index

 	
 next |

 	CRUD v4

Contents

	Introduction
	Why Use Crud

	Bugs

	Features

	Support / Questions

	Installation
	Requirements

	Getting the source code

	Using composer

	Using git submodule

	Loading the plugin

	Configuring the controller

	Quick Start
	The application

	App Controller

	Posts Controller

	Creating an API

	Configuration
	Actions

	Action configuration

	Disabling loaded actions

	Built-in actions

	Listeners

	Actions
	What Is An Action?

	The Anatomy Of An Action
	Class And Namespace

	Request Methods

	Events & Subject

	Boilerplate

	More On Actions
	Index

	View

	Add

	Edit

	Delete

	Lookup

	Bulk

	Bulk Delete

	Bulk Set Value

	Bulk Toggle

	Custom

	Listeners
	The Anatomy Of A Listener
	Class And Namespace

	Implemented Events

	The Callback

	More on listeners
	API

	API Pagination

	API Query Log

	Redirect listener

	Related Models

	Search

	Custom

	Events
	Controller
	implementedEvents

	Action

	All CRUD Events
	Stop Delete

	Check Success

	Add Conditions

	Logging the Found Item

	Check Created Status

	Check Success Status

	Get Entity ID

	Add Conditions

	Modify the Result

	Unit Testing
	Proxy methods
	_crud()

	_action($name)

	_trigger($eventName, $data = [])

	_listener($name)

	_subject($additional = [])

	_session()

	_controller()

	_request()

	_response()

	_entity()

	_table()

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

Introduction

CRUD was built to be scaffolding [http://book.cakephp.org/2.0/en/controllers/scaffolding.html]
on steroids, and allow developers to have enough flexibility to use it for both
rapid prototyping and production applications, even on the same code base –
saving you time.

Why Use Crud

	CRUD is very fast to install, a few minutes tops.

	CRUD is very flexible and has tons of configuration options (but very sane defaults, just like CakePHP).

	CRUD aims to stay out of your way, and if it happens to get in your way, you can change the undesired behavior very easily.

	CRUD relies heavily on CakePHP events making it possible to override, extend, or disable almost all of CRUD’s functionality either globally or for one specific action.

	CRUD removes the boilerplate code from your controllers, which mean less code to maintain, and less code to spend time unit testing.

	CRUD will dynamically add the actions to your controller so you don’t have to re-implement them over and over again.

	CRUD does not have the same limitations as CakePHP’s own scaffolding, which is “my way or the highway.” CRUD allows you to hook into all stages of a request, only building the controller code needed specifically for your business logic, outsourcing all the heavy boiler-plating to CRUD.

	CRUD allows you to use your own views, baked or hand-crafted, in addition to adding the code needed to fulfill your application logic, using events. It is by default compatible with CakePHP’s baked views.

	CRUD also provides built in features for JSON API for any action you have enabled through CRUD, which eliminates maintaining both a HTML frontend and a JSON and/or XML interface for your applications – saving you tons of time and having a leaner code base.

	CRUD uses the MIT license, just like CakePHP.

Bugs

If you happen to stumble upon a bug, please feel free to create a pull request with a fix
(optionally with a test), and a description of the bug and how it was resolved.

You can also create an issue with a description to raise awareness of the bug.

Features

If you have a good idea for a Crud feature, please join us on IRC and let’s discuss it. Pull
requests are always more than welcome.

Support / Questions

You can join us on IRC in the #FriendsOfCake channel on irc.freenode.net for any support or questions.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

Installation

Installing composer is quick and simple.

Requirements

	CakePHP 3.x

	PHP 5.4

Getting the source code

You can get the Crud source code using either composer or git.

Using composer

The recommended installation method for this plugin is by using composer.

Using the inline require for composer:

composer require friendsofcake/crud:~4.2

Or add this to your composer.json configuration:

{
 "require" : {
 "FriendsOfCake/crud": "~4.2"
 }
}

Using git submodule

Or add it as a git module, this is recommended over git clone since it’s
easier to keep up to date with development that way:

git submodule add git://github.com/FriendsOfCake/crud.git Plugin/Crud
cd Plugin/Crud

Loading the plugin

Add the following to your /App/Config/bootstrap.php

Plugin::load('Crud');

Configuring the controller

In your AppController add the following code:

<?php
namespace App\Controller;

class AppController extends \Cake\Controller\Controller {

 use \Crud\Controller\ControllerTrait;

}

Note

It’s not required to add the ControllerTrait to AppController - you can add it to any specific controller
as well if you don’t want Crud installed application wide

Adding the ControllerTrait itself do not enable anything CRUD, but simply installs the code to handle
the \Cake\Error\MissingActionException exception so you don’t have to implement an action in your controller
for Crud to work. This will make a lot of sense later.

The Configuration page explains how to setup and configure the Crud component.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

Quick Start

You are busy, and you just want to get things done™, so let’s get going.

After installation, you are ready to CRUD-ify your app.

The application

So the application our pointy-haired boss [https://www.google.com/search?q=pointy+haired+boss] has tasked us to create today is a Blog.

App Controller

Since CRUD is awesome, and you already started to kinda love it, we want to enable CRUD for our entire application.

Let’s setup CRUD to handle all index(), add(), edit(), view() and delete() actions automatically,
we do this by enabling Crud in the AppController with the correct actions configuration.

<?php
namespace App\Controller;

class AppController extends \Cake\Controller\Controller {

 use \Crud\Controller\ControllerTrait;

 public $components = [
 'Crud.Crud' => [
 'actions' => [
 'Crud.Index',
 'Crud.Add',
 'Crud.Edit',
 'Crud.View',
 'Crud.Delete'
]
]
];
}

There we go, that was easy.

Posts Controller

So, our new shiny Blog needs a Posts Controller to, well, manage the posts.

<?php

namespace App\Controller;

class PostsController extends AppController {

}

(...) and that’s it! we don’t really need any logic there for now, since we have configured CRUD to take care of all actions

But... since CRUD doesn’t provide any views (yet), you will have to bake the views for now

Console/cake bake template posts

Let’s check out our new application, go to /posts and behold, a nice paginated ìndex() template, all without any code
in your controller.

You should now be able to navigate to /posts/add as well and create your first post.

Creating an API

This section is WIP.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

Configuration

Configuration of Crud is done through the Crud component - either on the fly
anywhere in you application, or by providing the configuration in the
Controller::$components property.

Assuming you have followed the installation guide we will
now begin the actual configuration of Crud.

Crud is loaded like any other Component in CakePHP - simply by adding it to
the $components variable in the controller

class AppController extends \Cake\Controller\Controller {

 public $components = ['Crud.Crud'];

}

At this time, the Crud Component is loaded and ready for usage.

However, Crud has not been configured to handle any controller actions yet.

Actions

Configuring Crud to handle actions is simple.

The list of actions is provided either as Component configuration, or on the
fly.

An example of Component configuration:

class AppController extends \Cake\Controller\Controller {

 public $components = [
 'Crud.Crud' => [
 'actions' => ['Crud.Index']
]
];

}

An example of on the fly enabling an Crud action:

class AppController extends \Cake\Controller\Controller {

 public function beforeFilter(\Cake\Event\Event $event) {
 $this->Crud->mapAction('index', 'Crud.Index');
 }

}

The examples above are functionally identical, and instructs Crud to handle the
index action in controllers using Crud.Index action class.

Note

If you do not wish for Crud to be enabled across all controllers, or even use
all actions provided by Crud
you can pick and chose which to use. Crud will not force take-over any
application logic, and you can enable/disable
them as you see fit.

Action configuration

Note

Each Crud Action have a different set of configuration
settings, please see their individual documentation page for more information.

Passing in configuration for an action is simple.

Note

In the examples below, we reconfigure the Index Action to render
my_index.ctp instead of index.ctp

An example of Component configuration

class AppController extends \Cake\Controller\Controller {

 public $components = [
 'Crud.Crud' => [
 'actions' => [
 'index' => ['className' => 'Crud.Index', 'view' => 'my_index']
]
]
];

}

An example of on the fly enabling an Crud action with configuration

class AppController extends \Cake\Controller\Controller {

 public function beforeFilter(\Cake\Event\Event $event) {
 $this->Crud->mapAction('index', [
 'className' => 'Crud.Index',
 'view' => 'my_index'
]);
 }

}

Disabling loaded actions

If you’ve loaded an action in eg. your AppController - but don’t want it included in a specific controller, it can be disabled with the $this->Crud->disable(['action_name']).

Example of disable a loaded action:

class AppController extends \Cake\Controller\Controller {

 public $components = [
 'Crud.Crud' => [
 'actions' => ['Crud.Index', 'Crud.View', 'Crud.Delete', 'Crud.Edit']
]
];

}

class PostsController extends AppController {

 public function beforeFilter(\Cake\Event\Event $event) {
 parent::beforeFilter($event);

 $this->Crud->disable(['Edit', 'Delete']);
 }

}

Built-in actions

Crud provides the default CRUD actions out of the box.

	Index Action

	View Action

	Add Action

	Edit Action

	Delete Action

	Lookup Action

	Bulk Delete Action

	Bulk Set Value Action

	Bulk Field Toggle Action

It’s possible to create your own Crud Action as well, or overwrite the
built-in ones.

Simply provide the className configuration key for an action, and Crud will
use that one instead.

Listeners

Note

Each Crud Listener have a different set of configuration
settings, please see their individual documentation page for more information.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

Actions

Note

CRUD already provides the basic Index, View, Add, Edit and
Delete actions, so you do not need to implement these on your own.
You can find the documentation for these actions in the menu to the left.

Actions are the backbone of CRUD - this is where most of the logic happens.

A Crud Action contains more or less the exact same code as a normal
controller action.

The main difference between your normal Controller actions and a CRUD Action
is that the CRUD Action is highly generic and flexible.

What Is An Action?

A CRUD action roughly translates to a normal Controller action.

The primary difference is that CRUD actions are made to be as generic and secure
out of the box as possible.

You can consider a CRUD action as a more flexible PHP trait that fits nicely
within the CakePHP ecosystem.

The Anatomy Of An Action

Below is the code for the Index Crud Action

In the next few sections we will walk through the code and explain how it works,
and what every single line of code does.

For each section, the relevant lines of code will be highlighted.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	<?php
namespace Crud\Action;

class Index extends BaseAction {

	/**
	 * Generic handler for all HTTP verbs
	 *
	 * @return void
	 */
	protected function _handle() {
		$subject = $this->_subject();
		$subject->set(['success' => true, 'viewVar' => $this->viewVar()]);

		$this->_trigger('beforePaginate', $subject);

		$controller = $this->_controller();
		$items = $controller->paginate();
		$subject->set(['items' => $items]);

		$this->_trigger('afterPaginate', $subject);

		$controller->set(['success' => $subject->success, $subject->viewVar => $subject->items]);
		$this->_trigger('beforeRender', $subject);
	}

}

Class And Namespace

All build-in actions in Crud live in the Crud\Action namespace.

All actions in Crud, even your own, should inherit from the
Crud\Action\Base class.
This class is abstract and provides numerous auxiliary methods which can be
useful for you both as a developer as an action creator.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	<?php
namespace Crud\Action;

class Index extends BaseAction {

	/**
	 * Generic handler for all HTTP verbs
	 *
	 * @return void
	 */
	protected function _handle() {
		$subject = $this->_subject();
		$subject->set(['success' => true, 'viewVar' => $this->viewVar()]);

		$this->_trigger('beforePaginate', $subject);

		$controller = $this->_controller();
		$items = $controller->paginate();
		$subject->set(['items' => $items]);

		$this->_trigger('afterPaginate', $subject);

		$controller->set(['success' => $subject->success, $subject->viewVar => $subject->items]);
		$this->_trigger('beforeRender', $subject);
	}

}

Request Methods

Next is the method _handle. A Crud Action can respond to any HTTP verb
(GET, POST, PUT, DELETE).
Each HTTP verb can be implemented as method, e.g. _get() for HTTP GET,
_post() for HTTP POST and _put() for HTTP PUT.

If no HTTP verb specific method is found in the class, _handle() will be
executed.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	<?php
namespace Crud\Action;

class Index extends BaseAction {

	/**
	 * Generic handler for all HTTP verbs
	 *
	 * @return void
	 */
	protected function _handle() {
		$subject = $this->_subject();
		$subject->set(['success' => true, 'viewVar' => $this->viewVar()]);

		$this->_trigger('beforePaginate', $subject);

		$controller = $this->_controller();
		$items = $controller->paginate();
		$subject->set(['items' => $items]);

		$this->_trigger('afterPaginate', $subject);

		$controller->set(['success' => $subject->success, $subject->viewVar => $subject->items]);
		$this->_trigger('beforeRender', $subject);
	}

}

You can treat the _handle() method as a catch-all, if your crud action
wants to process all possible HTTP verbs.

An advantage of this setup is that you can separate the logic on a request type
level instead of mixing all of the logic into one big block of code.

For example the Edit Crud Action implements _get(),
_post() and _put() methods. The _get() method simply reads the entity
from the database and passes it to the form, while _put() handles validation
and saving the entity back to the database.

Events & Subject

All Crud actions emit a range of events, and all of these events always contain a
Crud Subject`. The Crud Subject`
can change its state between emitted events. This object is a simple StdClass
which contains the current state of the Crud request.

The real beauty of Crud is the events and the flexibility they provide.

All calls to _trigger() emit an event, that you as a developer can listen to
and inject your own application logic. These events are in no way magical, they
are simply normal CakePHP events, dispatched like all other events in CakePHP.

You can for example listen for the beforePaginate event and add conditions
to your pagination query, just with a few lines of code. Those few lines
of code is what makes your application unique. The rest of the code you would
normally have is simply repeated boiler plate code.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	<?php
namespace Crud\Action;

class Index extends BaseAction {

	/**
	 * Generic handler for all HTTP verbs
	 *
	 * @return void
	 */
	protected function _handle() {
		$subject = $this->_subject();
		$subject->set(['success' => true, 'viewVar' => $this->viewVar()]);

		$this->_trigger('beforePaginate', $subject);

		$controller = $this->_controller();
		$items = $controller->paginate();
		$subject->set(['items' => $items]);

		$this->_trigger('afterPaginate', $subject);

		$controller->set(['success' => $subject->success, $subject->viewVar => $subject->items]);
		$this->_trigger('beforeRender', $subject);
	}

}

Boilerplate

Only the code that you would normally have in your controller is left now.

While these 3 lines seem simple, and the whole Crud implementation a bit overkill
at first, the true power of this setup will be clear when your application
grows and the requirements increase.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	<?php
namespace Crud\Action;

class Index extends BaseAction {

	/**
	 * Generic handler for all HTTP verbs
	 *
	 * @return void
	 */
	protected function _handle() {
		$subject = $this->_subject();
		$subject->set(['success' => true, 'viewVar' => $this->viewVar()]);

		$this->_trigger('beforePaginate', $subject);

		$controller = $this->_controller();
		$items = $controller->paginate();
		$subject->set(['items' => $items]);

		$this->_trigger('afterPaginate', $subject);

		$controller->set(['success' => $subject->success, $subject->viewVar => $subject->items]);
		$this->_trigger('beforeRender', $subject);
	}

}

For example adding an API layer to your application later in time will be
non-trivial and time consuming if you do not use crud - especially if you have
many controllers.

Using Crud, it would be as simple as loading the API listener
and everything would be taken care of. All validation, exceptions, success
and error responses would work immediately, and with just a few lines of code.

This is because the powerful event system can hook into the request and hijack
the rendering easily and effortlessly – something baked controllers do not offer.

More On Actions

	Index
	Configuration
	enabled

	findMethod

	view

	viewVar

	serialize

	Events
	Crud.startup

	Crud.beforeFilter

	Crud.beforePaginate
	Add Conditions

	Crud.afterPaginate
	Modify the Result

	Crud.beforeRender

	View
	Configuration
	enabled

	findMethod

	view

	viewVar

	serialize

	Events
	Crud.startup

	Crud.beforeFilter

	Crud.beforeFind
	Add Conditions

	Crud.afterFind
	Logging the Found Item

	Crud.recordNotFound

	Crud.beforeRender

	Add
	Configuration
	enabled

	view

	saveMethod

	saveOptions

	serialize

	Related models

	Events
	Crud.startup

	Crud.beforeFilter

	Crud.beforeSave

	Crud.afterSave
	Check Created Status

	Check Success Status

	Get Entity ID

	Crud.setFlash

	Crud.beforeRedirect

	Crud.beforeRender

	Edit
	Configuration
	enabled

	view

	findMethod

	saveMethod

	saveOptions

	serialize

	Related models

	Events
	Crud.startup

	Crud.beforeFilter

	Crud.beforeFind
	Add Conditions

	Crud.afterFind
	Logging the Found Item

	Crud.beforeSave

	Crud.afterSave
	Check Created Status

	Check Success Status

	Get Entity ID

	Crud.setFlash

	Crud.beforeRedirect

	Crud.beforeRender

	Delete
	Configuration
	enabled

	findMethod

	serialize

	Events
	Crud.startup

	Crud.beforeFilter

	Crud.beforeFind
	Add Conditions

	Crud.afterFind
	Logging the Found Item

	Crud.beforeDelete
	Stop Delete

	Crud.afterDelete
	Check Success

	Crud.beforeRedirect

	Lookup
	Configuration
	enabled

	view

	viewVar

	serialize

	Events
	Crud.startup

	Crud.beforeFilter

	Crud.beforeLookup
	Add Conditions

	Crud.afterLookup
	Modify the Result

	Crud.recordNotFound

	Crud.beforeRender

	Bulk
	Configuration
	enabled

	findMethod

	Events
	Crud.startup

	Crud.beforeFilter

	Crud.beforeBulk
	Stop Bulk Action

	Crud.afterBulk
	Check Success

	Crud.setFlash

	Crud.beforeRedirect

	Bulk Delete
	Configuration
	enabled

	findMethod

	Events
	Crud.startup

	Crud.beforeFilter

	Crud.beforeBulk
	Stop Bulk Action

	Crud.afterBulk
	Check Success

	Crud.setFlash

	Crud.beforeRedirect

	Bulk Set Value
	Configuration
	enabled

	findMethod

	Events
	Crud.startup

	Crud.beforeFilter

	Crud.beforeBulk
	Stop Bulk Action

	Crud.afterBulk
	Check Success

	Crud.setFlash

	Crud.beforeRedirect

	Bulk Toggle
	Configuration
	enabled

	findMethod

	Events
	Crud.startup

	Crud.beforeFilter

	Crud.beforeBulk
	Stop Bulk Action

	Crud.afterBulk
	Check Success

	Crud.setFlash

	Crud.beforeRedirect

	Custom

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Actions

Index

The Index Crud Action paginates over the primary model in the controller.

On a high level it’s basically just calling Controller::paginate().

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

findMethod

The 1st parameter to Table::find() - the default value is all.

To get the current configured findMethod keys call the findMethod method without any arguments.

$this->Crud->action()->findMethod();

To change the findMethod value pass a string argument to the method

$this->Crud->action()->findMethod('my_custom_finder');

view

Get or set the view file to render at the end of the request.

The view setting is passed directly and unmodified to Controller::render().

To get the current configured view call the view method without any arguments.

$this->Crud->action()->view();

To change the view to render, pass a string as first argument.

$this->Crud->action()->view('my_custom_view');

Note

If the first parameter is NULL - which is the default value - the normal CakePHP behavior will be used.

Warning

Due to the nature of this method, once a custom view has been set, it’s not possible to revert back to
the default behavior by calling ->view(null) as it will return the current configuration.

viewVar

Note

This maps directly to the $key argument in Controller::set($key, $value)

Change the name of the variable which contains the result of a index or view action query result.

To get the current configured viewVar call the viewViar method without any arguments.

$this->Crud->action()->viewVar();

To change the viewVar, pass a string as first argument.

$this->Crud->action()->viewVar('items');

For Index Action the default is plural version of the controller name.

Having a controller named PostsController would mean that the viewVar would be posts by default.

For View Action the default is singular version of the controller name.

Having a controller named PostsController would mean that the viewVar would be post by default.

serialize

Note

This setting is only relevant if you use the API listener.

Note

The API listener will always enforce success and data to be part of the _serialize
array.

This method is intended to allow you to add additional keys to your API responses with ease. An example of this is the
API Query Log.

To get the current configured serialize keys call the serialize method without any arguments.

$this->Crud->action()->serialize();

To change the serialize keys, pass a string or an array as first argument.

If a string is passed, it will be cast to array automatically.

$this->Crud->action()->serialize(['my', 'extra', 'keys']);

Events

This is a list of events emitted from the Index Crud Action.

Please see the events documentation for a full list of generic properties and
how to use the event system correctly.

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.beforePaginate

This event is emitted before Controller::paginate() is called.

Add Conditions

public function index() {
 $this->Crud->on('beforePaginate', function(\Cake\Event\Event $event) {
 $this->paginate['conditions']['is_active'] = true;
 });

 return $this->Crud->execute();
}

Crud.afterPaginate

This event is emitted right after the call to Controller::paginate().

The entities property of the event object contains all the database records found in the pagination call.

Modify the Result

public function index() {
 $this->Crud->on('afterPaginate', function(\Cake\Event\Event $event) {
 foreach ($event->subject->entities as $entity) {
 // $entity is an entity
 }
 });

 return $this->Crud->execute();
}

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Actions

View

The View Crud Action will read a record from a data source based on the ID
that is part of the request.

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

findMethod

The 1st parameter to Table::find() - the default value is all.

To get the current configured findMethod keys call the findMethod method without any arguments.

$this->Crud->action()->findMethod();

To change the findMethod value pass a string argument to the method

$this->Crud->action()->findMethod('my_custom_finder');

view

Get or set the view file to render at the end of the request.

The view setting is passed directly and unmodified to Controller::render().

To get the current configured view call the view method without any arguments.

$this->Crud->action()->view();

To change the view to render, pass a string as first argument.

$this->Crud->action()->view('my_custom_view');

Note

If the first parameter is NULL - which is the default value - the normal CakePHP behavior will be used.

Warning

Due to the nature of this method, once a custom view has been set, it’s not possible to revert back to
the default behavior by calling ->view(null) as it will return the current configuration.

viewVar

Note

This maps directly to the $key argument in Controller::set($key, $value)

Change the name of the variable which contains the result of a index or view action query result.

To get the current configured viewVar call the viewViar method without any arguments.

$this->Crud->action()->viewVar();

To change the viewVar, pass a string as first argument.

$this->Crud->action()->viewVar('items');

For Index Action the default is plural version of the controller name.

Having a controller named PostsController would mean that the viewVar would be posts by default.

For View Action the default is singular version of the controller name.

Having a controller named PostsController would mean that the viewVar would be post by default.

serialize

Note

This setting is only relevant if you use the API listener.

Note

The API listener will always enforce success and data to be part of the _serialize
array.

This method is intended to allow you to add additional keys to your API responses with ease. An example of this is the
API Query Log.

To get the current configured serialize keys call the serialize method without any arguments.

$this->Crud->action()->serialize();

To change the serialize keys, pass a string or an array as first argument.

If a string is passed, it will be cast to array automatically.

$this->Crud->action()->serialize(['my', 'extra', 'keys']);

Events

This is a list of events emitted from the View Crud Action.

Please see the events documentation for a full list of generic
properties and how to use the event system correctly.

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.beforeFind

The event is emitted before calling the find method in the table.

The Crud Subject contains the following keys:

	id The ID that was originally passed to the action and usually the primary key value of your table.

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

This is the last place you can modify the query before it’s executed against the database.

Note

An example

Given the URL: /posts/view/10 the repository object will be an instance of PostsTable and the query
includes a WHERE condition with Posts.id = 10

After the event has emitted, the database query is executed with LIMIT 1.

If a record is found the Crud.afterFind event is emitted.

Warning

If no record is found in the database, the Crud.recordNotFound event is emitted instead of Crud.afterFind.

Add Conditions

public function delete($id) {
 $this->Crud->on('beforeFind', function(\Cake\Event\Event $event) {
 $event->subject->query->where(['author' => $this->Auth->user('id')]);
 });

 return $this->Crud->execute();
}

Crud.afterFind

After the query has been executed, and a record has been found this event is emitted.

The Crud Subject contains two keys:

	id The ID that was originally passed to the action and is usually the primary key of your model.

	entity The record that was found in the database.

Note

If an entity is not found, the RecordNotFound event is emitted instead.

Logging the Found Item

public function delete($id) {
 $this->Crud->on('afterFind', function(\Cake\Event\Event $event) {
 $this->log("Found item: $event->subject->entity->id in the database");
 });

 return $this->Crud->execute();
}

Crud.recordNotFound

Note

This event will throw an exception.

The default configuration will thrown an Cake\Error\NotFoundException which will yield a 404 response.

The event is triggered after a find did not find any records in the database.

You can modify the exception class thrown using CrudComponent::message method

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Actions

Add

The Add Crud Action will create a new record if the request is POST
and the data validates - otherwise it will attempt to render a form to the end-user.

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

view

Get or set the view file to render at the end of the request.

The view setting is passed directly and unmodified to Controller::render().

To get the current configured view call the view method without any arguments.

$this->Crud->action()->view();

To change the view to render, pass a string as first argument.

$this->Crud->action()->view('my_custom_view');

Note

If the first parameter is NULL - which is the default value - the normal CakePHP behavior will be used.

Warning

Due to the nature of this method, once a custom view has been set, it’s not possible to revert back to
the default behavior by calling ->view(null) as it will return the current configuration.

saveMethod

The method to execute on Table:: when saving an entity - the default value is save.

To get the current configured saveMethod keys call the saveMethod method without any arguments.

$this->Crud->action()->saveMethod();

To change the saveMethod value pass an string argument to the method

$this->Crud->action()->saveMethod('my_custom_save_method');

saveOptions

The 2nd parameter to Table::save() - the default value is ['validate' => true, 'atomic' => true].

To get the current configured saveOptions keys call the saveOptions method without any arguments.

$this->Crud->action()->saveOptions();

To change the saveOptions value pass an array argument to the method

$this->Crud->action()->saveOptions(['atomic' => false]);

Sometimes you need to change the accessible fields before you update your entity.

$this->Crud->action()->saveOptions(['accessibleFields' => ['role_id' => true]]);

serialize

Note

This setting is only relevant if you use the API listener.

Note

The API listener will always enforce success and data to be part of the _serialize
array.

This method is intended to allow you to add additional keys to your API responses with ease. An example of this is the
API Query Log.

To get the current configured serialize keys call the serialize method without any arguments.

$this->Crud->action()->serialize();

To change the serialize keys, pass a string or an array as first argument.

If a string is passed, it will be cast to array automatically.

$this->Crud->action()->serialize(['my', 'extra', 'keys']);

Related models

related_models

Events

This is a list of events emitted from the Add Crud Action.

Please see the events documentation for a full list of generic properties and
how to use the event system correctly.

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.beforeSave

Note

Do not confuse this event with the beforeSave callback in the ORM layer

Called right before calling Table::save().

The Crud Subject contains the following keys:

	entity An entity object marshaled with the HTTP POST data from the request.

	saveMethod A string with the saveMethod.

	saveOptions An array with the saveOptions.

All modifications to these keys will be passed into the Table::$saveMethod.

Warning

After this event has been emitted, changes done through the $action->saveMethod() or $action->saveOptions()
methods will no longer affect the code, as the rest of the code uses the values from the Crud Subject

Crud.afterSave

Note

Do not confuse this event with the afterSave callback in the ORM layer.

This event is emitted right after the call to Table::save().

The Crud Subject contains the following keys:

	id The newly inserted ID. It’s only available if the call to Table::save() was successful.

	success indicates whether or not the Table::save() call succeed or not.

	created true if the record was created and false if the record was updated.

	entity An entity object marshaled with the HTTP POST data from the request and the save() logic.

Check Created Status

public function edit($id) {
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject->created) {
 $this->log("The entity was created");
 } else {
 $this->log("The entity was updated");
 }
 });

 return $this->Crud->execute();
}

Check Success Status

public function edit($id) {
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject->success) {
 $this->log("The entity was saved successfully");
 } else {
 $this->log("The entity was NOT saved successfully");
 }
 });

 return $this->Crud->execute();
}

Get Entity ID

public function add() {
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject->created) {
 $this->log("The entity was created with id: $event->subject->id");
 }
 });

 return $this->Crud->execute();
}

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Actions

Edit

The Edit Crud Action will update an existing record if the request is POST or PUT
and the data validates - otherwise it will attempt to render a form to the end-user.

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

view

Get or set the view file to render at the end of the request.

The view setting is passed directly and unmodified to Controller::render().

To get the current configured view call the view method without any arguments.

$this->Crud->action()->view();

To change the view to render, pass a string as first argument.

$this->Crud->action()->view('my_custom_view');

Note

If the first parameter is NULL - which is the default value - the normal CakePHP behavior will be used.

Warning

Due to the nature of this method, once a custom view has been set, it’s not possible to revert back to
the default behavior by calling ->view(null) as it will return the current configuration.

findMethod

The 1st parameter to Table::find() - the default value is all.

To get the current configured findMethod keys call the findMethod method without any arguments.

$this->Crud->action()->findMethod();

To change the findMethod value pass a string argument to the method

$this->Crud->action()->findMethod('my_custom_finder');

saveMethod

The method to execute on Table:: when saving an entity - the default value is save.

To get the current configured saveMethod keys call the saveMethod method without any arguments.

$this->Crud->action()->saveMethod();

To change the saveMethod value pass an string argument to the method

$this->Crud->action()->saveMethod('my_custom_save_method');

saveOptions

The 2nd parameter to Table::save() - the default value is ['validate' => true, 'atomic' => true].

To get the current configured saveOptions keys call the saveOptions method without any arguments.

$this->Crud->action()->saveOptions();

To change the saveOptions value pass an array argument to the method

$this->Crud->action()->saveOptions(['atomic' => false]);

Sometimes you need to change the accessible fields before you update your entity.

$this->Crud->action()->saveOptions(['accessibleFields' => ['role_id' => true]]);

serialize

Note

This setting is only relevant if you use the API listener.

Note

The API listener will always enforce success and data to be part of the _serialize
array.

This method is intended to allow you to add additional keys to your API responses with ease. An example of this is the
API Query Log.

To get the current configured serialize keys call the serialize method without any arguments.

$this->Crud->action()->serialize();

To change the serialize keys, pass a string or an array as first argument.

If a string is passed, it will be cast to array automatically.

$this->Crud->action()->serialize(['my', 'extra', 'keys']);

Related models

related_models

Events

This is a list of events emitted from the Edit Crud Action.

Please see the events documentation for a full list of generic properties and
how to use the event system correctly.

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.beforeFind

The event is emitted before calling the find method in the table.

The Crud Subject contains the following keys:

	id The ID that was originally passed to the action and usually the primary key value of your table.

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

This is the last place you can modify the query before it’s executed against the database.

Note

An example

Given the URL: /posts/view/10 the repository object will be an instance of PostsTable and the query
includes a WHERE condition with Posts.id = 10

After the event has emitted, the database query is executed with LIMIT 1.

If a record is found the Crud.afterFind event is emitted.

Warning

If no record is found in the database, the Crud.recordNotFound event is emitted instead of Crud.afterFind.

Add Conditions

public function delete($id) {
 $this->Crud->on('beforeFind', function(\Cake\Event\Event $event) {
 $event->subject->query->where(['author' => $this->Auth->user('id')]);
 });

 return $this->Crud->execute();
}

Crud.afterFind

After the query has been executed, and a record has been found this event is emitted.

The Crud Subject contains two keys:

	id The ID that was originally passed to the action and is usually the primary key of your model.

	entity The record that was found in the database.

Note

If an entity is not found, the RecordNotFound event is emitted instead.

Logging the Found Item

public function delete($id) {
 $this->Crud->on('afterFind', function(\Cake\Event\Event $event) {
 $this->log("Found item: $event->subject->entity->id in the database");
 });

 return $this->Crud->execute();
}

Crud.beforeSave

Note

Do not confuse this event with the beforeSave callback in the ORM layer

Called right before calling Table::save().

The Crud Subject contains the following keys:

	entity An entity object marshaled with the HTTP POST data from the request.

	saveMethod A string with the saveMethod.

	saveOptions An array with the saveOptions.

All modifications to these keys will be passed into the Table::$saveMethod.

Warning

After this event has been emitted, changes done through the $action->saveMethod() or $action->saveOptions()
methods will no longer affect the code, as the rest of the code uses the values from the Crud Subject

Crud.afterSave

Note

Do not confuse this event with the afterSave callback in the ORM layer.

This event is emitted right after the call to Table::save().

The Crud Subject contains the following keys:

	id The newly inserted ID. It’s only available if the call to Table::save() was successful.

	success indicates whether or not the Table::save() call succeed or not.

	created true if the record was created and false if the record was updated.

	entity An entity object marshaled with the HTTP POST data from the request and the save() logic.

Check Created Status

public function edit($id) {
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject->created) {
 $this->log("The entity was created");
 } else {
 $this->log("The entity was updated");
 }
 });

 return $this->Crud->execute();
}

Check Success Status

public function edit($id) {
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject->success) {
 $this->log("The entity was saved successfully");
 } else {
 $this->log("The entity was NOT saved successfully");
 }
 });

 return $this->Crud->execute();
}

Get Entity ID

public function add() {
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject->created) {
 $this->log("The entity was created with id: $event->subject->id");
 }
 });

 return $this->Crud->execute();
}

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Actions

Delete

The Delete Crud Action will delete a record by the id provided in the URL.

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

findMethod

The 1st parameter to Table::find() - the default value is all.

To get the current configured findMethod keys call the findMethod method without any arguments.

$this->Crud->action()->findMethod();

To change the findMethod value pass a string argument to the method

$this->Crud->action()->findMethod('my_custom_finder');

serialize

Note

This setting is only relevant if you use the API listener.

Note

The API listener will always enforce success and data to be part of the _serialize
array.

This method is intended to allow you to add additional keys to your API responses with ease. An example of this is the
API Query Log.

To get the current configured serialize keys call the serialize method without any arguments.

$this->Crud->action()->serialize();

To change the serialize keys, pass a string or an array as first argument.

If a string is passed, it will be cast to array automatically.

$this->Crud->action()->serialize(['my', 'extra', 'keys']);

Events

This is a list of events emitted from the Delete Crud Action.

Please see the events documentation for a full list of generic
properties and how to use the event system correctly.

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.beforeFind

The event is emitted before calling the find method in the table.

The Crud Subject contains the following keys:

	id The ID that was originally passed to the action and usually the primary key value of your table.

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

This is the last place you can modify the query before it’s executed against the database.

Note

An example

Given the URL: /posts/view/10 the repository object will be an instance of PostsTable and the query
includes a WHERE condition with Posts.id = 10

After the event has emitted, the database query is executed with LIMIT 1.

If a record is found the Crud.afterFind event is emitted.

Warning

If no record is found in the database, the Crud.recordNotFound event is emitted instead of Crud.afterFind.

Add Conditions

public function delete($id) {
 $this->Crud->on('beforeFind', function(\Cake\Event\Event $event) {
 $event->subject->query->where(['author' => $this->Auth->user('id')]);
 });

 return $this->Crud->execute();
}

Crud.afterFind

After the query has been executed, and a record has been found this event is emitted.

The Crud Subject contains two keys:

	id The ID that was originally passed to the action and is usually the primary key of your model.

	entity The record that was found in the database.

Note

If an entity is not found, the RecordNotFound event is emitted instead.

Logging the Found Item

public function delete($id) {
 $this->Crud->on('afterFind', function(\Cake\Event\Event $event) {
 $this->log("Found item: $event->subject->entity->id in the database");
 });

 return $this->Crud->execute();
}

Crud.beforeDelete

This event is emitted before calling Table::delete.

The Crud Subject contains the following keys:

	id The ID of the entity, from the URL

	item The Entity from the find() call.

To abort a delete() simply stop the event by calling
$event->stopPropagation().

Stop Delete

public function delete($id) {
 $this->Crud->on('beforeDelete', function(\Cake\Event\Event $event) {
 // Stop the delete event, the entity will not be deleted
 if ($event->subject->item->author !== 'admin') {
 $event->stopPropagation();
 }
 });

 return $this->Crud->execute();
}

Crud.afterDelete

This event is emitted after Table::delete() has been called.

The Crud Subject contains two keys:

	success if true the delete() call succeeded, false otherwise

	id The ID that was originally passed to the action and is usually the primary key of your model.

	item The record that was found in the database.

Check Success

public function delete($id) {
 $this->Crud->on('afterDelete', function(\Cake\Event\Event $event) {
 if (!$event->subject->success) {
 $this->log("Delete failed for entity $event->subject->id");
 }
 });

 return $this->Crud->execute();
}

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Actions

Lookup

The Lookup Crud Action will display a record from a data source for auto-complete purposes. Used mostly for crud-view.

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

view

Get or set the view file to render at the end of the request.

The view setting is passed directly and unmodified to Controller::render().

To get the current configured view call the view method without any arguments.

$this->Crud->action()->view();

To change the view to render, pass a string as first argument.

$this->Crud->action()->view('my_custom_view');

Note

If the first parameter is NULL - which is the default value - the normal CakePHP behavior will be used.

Warning

Due to the nature of this method, once a custom view has been set, it’s not possible to revert back to
the default behavior by calling ->view(null) as it will return the current configuration.

viewVar

Note

This maps directly to the $key argument in Controller::set($key, $value)

Change the name of the variable which contains the result of a index or view action query result.

To get the current configured viewVar call the viewViar method without any arguments.

$this->Crud->action()->viewVar();

To change the viewVar, pass a string as first argument.

$this->Crud->action()->viewVar('items');

For Index Action the default is plural version of the controller name.

Having a controller named PostsController would mean that the viewVar would be posts by default.

For View Action the default is singular version of the controller name.

Having a controller named PostsController would mean that the viewVar would be post by default.

serialize

Note

This setting is only relevant if you use the API listener.

Note

The API listener will always enforce success and data to be part of the _serialize
array.

This method is intended to allow you to add additional keys to your API responses with ease. An example of this is the
API Query Log.

To get the current configured serialize keys call the serialize method without any arguments.

$this->Crud->action()->serialize();

To change the serialize keys, pass a string or an array as first argument.

If a string is passed, it will be cast to array automatically.

$this->Crud->action()->serialize(['my', 'extra', 'keys']);

Events

This is a list of events emitted from the Lookup Crud Action.

Please see the events documentation for a full list of generic
properties and how to use the event system correctly.

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.beforeLookup

This event is emitted before Controller::paginate() is called inside the Lookup Action.

Add Conditions

public function lookup() {
 $this->Crud->on('beforeLookup', function(\Cake\Event\Event $event) {
 $this->paginate['conditions']['is_active'] = true;
 });

 return $this->Crud->execute();
}

Crud.afterLookup

This event is emitted right after the call to Controller::paginate() in the Lookup Action.

The entities property of the event object contains all the database records found in the pagination call.

Modify the Result

public function lookup() {
 $this->Crud->on('afterLookup', function(\Cake\Event\Event $event) {
 foreach ($event->subject->entities as $entity) {
 // $entity is an entity
 }
 });

 return $this->Crud->execute();
}

Crud.recordNotFound

Note

This event will throw an exception.

The default configuration will thrown an Cake\Error\NotFoundException which will yield a 404 response.

The event is triggered after a find did not find any records in the database.

You can modify the exception class thrown using CrudComponent::message method

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Actions

Bulk

If you need to perform an action against a number of records, you can extend
the abstract Bulk\BaseAction class to create your own.

Three BulkAction classes exist in the core:

	Delete: Deletes a set of entities

	SetValue: Sets a field to a value for a set of entities

	Toggle: Toggles the value of a boolean field for a set of entities

To create your own BulkAction, simply create a new action class with a _bulk
method. This method takes a CakePHP Query object as it’s first argument

<?php
namespace App\Crud\Action;

use Cake\ORM\Query;
use Crud\Action\Bulk\BaseAction;

class ApproveAction extends BaseAction
{
 /**
 * Set the value of the approved field to true
 * for a set of entities
 *
 * @param \Cake\ORM\Query $query The query to act upon
 * @return boolean
 */
 protected function _handle(Query $query)
 {
 $query->update()->set(['approved' => true]);
 $statement = $query->execute();
 $statement->closeCursor();
 return $statement->rowCount();
 }
}

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

findMethod

The 1st parameter to Table::find() - the default value is all.

To get the current configured findMethod keys call the findMethod method without any arguments.

$this->Crud->action()->findMethod();

To change the findMethod value pass a string argument to the method

$this->Crud->action()->findMethod('my_custom_finder');

Events

This is a list of events emitted from actions that extend Bulk\BaseAction.

Please see the events documentation for a full list of generic
properties and how to use the event system correctly.

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.beforeBulk

This event is emitted before _bulk() is called on a Bulk Crud action.

The Crud Subject contains the following keys:

	ids A list of ids of entities, from the request data

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

To abort a bulk action, simply stop the event by calling
$event->stopPropagation().

Stop Bulk Action

public function bulk($id) {
 $this->Crud->on('beforeBulk', function(\Cake\Event\Event $event) {
 // Stop the bulk event, the action will not continue
 if ($event->subject->item->author !== 'admin') {
 $event->stopPropagation();
 }
 });

 return $this->Crud->execute();
}

Crud.afterBulk

This event is emitted after calling _bulk() on a Bulk Crud action.

The Crud Subject contains two keys:

	success if true the _bulk() call succeeded, false otherwise

	ids A list of ids of entities, from the request data

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

Check Success

public function bulk($id) {
 $this->Crud->on('afterBulk', function(\Cake\Event\Event $event) {
 if (!$event->subject->success) {
 $this->log("Bulk action failed");
 }
 });

 return $this->Crud->execute();
}

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Actions

Bulk Delete

You can use the Bulk\DeleteAction class to delete a group of database records.

<?php
namespace App\Controller;

class PostsController extends AppController
{
 public function initialize()
 {
 parent::initialize();
 $this->Crud->mapAction('deleteAll', 'Crud.Bulk/Delete');
 }
}

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

findMethod

The 1st parameter to Table::find() - the default value is all.

To get the current configured findMethod keys call the findMethod method without any arguments.

$this->Crud->action()->findMethod();

To change the findMethod value pass a string argument to the method

$this->Crud->action()->findMethod('my_custom_finder');

Events

This is a list of events emitted from actions that extend Bulk\BaseAction.

Please see the events documentation for a full list of generic
properties and how to use the event system correctly.

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.beforeBulk

This event is emitted before _bulk() is called on a Bulk Crud action.

The Crud Subject contains the following keys:

	ids A list of ids of entities, from the request data

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

To abort a bulk action, simply stop the event by calling
$event->stopPropagation().

Stop Bulk Action

public function bulk($id) {
 $this->Crud->on('beforeBulk', function(\Cake\Event\Event $event) {
 // Stop the bulk event, the action will not continue
 if ($event->subject->item->author !== 'admin') {
 $event->stopPropagation();
 }
 });

 return $this->Crud->execute();
}

Crud.afterBulk

This event is emitted after calling _bulk() on a Bulk Crud action.

The Crud Subject contains two keys:

	success if true the _bulk() call succeeded, false otherwise

	ids A list of ids of entities, from the request data

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

Check Success

public function bulk($id) {
 $this->Crud->on('afterBulk', function(\Cake\Event\Event $event) {
 if (!$event->subject->success) {
 $this->log("Bulk action failed");
 }
 });

 return $this->Crud->execute();
}

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Actions

Bulk Set Value

You can use the Bulk\SetValueAction class to specify the value of a
given field for a group of database records.

<?php
namespace App\Controller;

class PostsController extends AppController
{
 public function initialize()
 {
 parent::initialize();
 $this->Crud->mapAction('publishAll', [
 'className' => 'Crud.Bulk/SetValue',
 'field' => 'status',
 'value' => 'publish',
]);
 }
}

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

findMethod

The 1st parameter to Table::find() - the default value is all.

To get the current configured findMethod keys call the findMethod method without any arguments.

$this->Crud->action()->findMethod();

To change the findMethod value pass a string argument to the method

$this->Crud->action()->findMethod('my_custom_finder');

Events

This is a list of events emitted from actions that extend Bulk\BaseAction.

Please see the events documentation for a full list of generic
properties and how to use the event system correctly.

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.beforeBulk

This event is emitted before _bulk() is called on a Bulk Crud action.

The Crud Subject contains the following keys:

	ids A list of ids of entities, from the request data

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

To abort a bulk action, simply stop the event by calling
$event->stopPropagation().

Stop Bulk Action

public function bulk($id) {
 $this->Crud->on('beforeBulk', function(\Cake\Event\Event $event) {
 // Stop the bulk event, the action will not continue
 if ($event->subject->item->author !== 'admin') {
 $event->stopPropagation();
 }
 });

 return $this->Crud->execute();
}

Crud.afterBulk

This event is emitted after calling _bulk() on a Bulk Crud action.

The Crud Subject contains two keys:

	success if true the _bulk() call succeeded, false otherwise

	ids A list of ids of entities, from the request data

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

Check Success

public function bulk($id) {
 $this->Crud->on('afterBulk', function(\Cake\Event\Event $event) {
 if (!$event->subject->success) {
 $this->log("Bulk action failed");
 }
 });

 return $this->Crud->execute();
}

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Actions

Bulk Toggle

You can use the Bulk\ToggleAction class to toggle the value of a
boolean field for a group of database records.

<?php
namespace App\Controller;

class PostsController extends AppController
{
 public function initialize()
 {
 parent::initialize();
 $this->Crud->mapAction('toggleActive', [
 'className' => 'Crud.Bulk/Toggle',
 'field' => 'toggle',
]);
 }
}

Configuration

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

findMethod

The 1st parameter to Table::find() - the default value is all.

To get the current configured findMethod keys call the findMethod method without any arguments.

$this->Crud->action()->findMethod();

To change the findMethod value pass a string argument to the method

$this->Crud->action()->findMethod('my_custom_finder');

Events

This is a list of events emitted from actions that extend Bulk\BaseAction.

Please see the events documentation for a full list of generic
properties and how to use the event system correctly.

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Crud.beforeBulk

This event is emitted before _bulk() is called on a Bulk Crud action.

The Crud Subject contains the following keys:

	ids A list of ids of entities, from the request data

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

To abort a bulk action, simply stop the event by calling
$event->stopPropagation().

Stop Bulk Action

public function bulk($id) {
 $this->Crud->on('beforeBulk', function(\Cake\Event\Event $event) {
 // Stop the bulk event, the action will not continue
 if ($event->subject->item->author !== 'admin') {
 $event->stopPropagation();
 }
 });

 return $this->Crud->execute();
}

Crud.afterBulk

This event is emitted after calling _bulk() on a Bulk Crud action.

The Crud Subject contains two keys:

	success if true the _bulk() call succeeded, false otherwise

	ids A list of ids of entities, from the request data

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

Check Success

public function bulk($id) {
 $this->Crud->on('afterBulk', function(\Cake\Event\Event $event) {
 if (!$event->subject->success) {
 $this->log("Bulk action failed");
 }
 });

 return $this->Crud->execute();
}

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Actions

Custom

If you are not satisfied with the Actions bundled with CRUD -
you can easily add your own.

A Crud Action can respond to any HTTP verb (GET, POST, PUT, DELETE).
Each HTTP verb can be implemented as method, e.g. _get() for HTTP GET,
_post() for HTTP POST and _put() for HTTP PUT.

If no HTTP verb specific method is found in the class, _handle() will be executed.

<?php
namespace App\Crud\Action;

class Index extends \Crud\Action\BaseAction {

 /**
 * Generic handler for all HTTP verbs
 *
 * @return void
 */
 protected function _handle() {

 }

}

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

Listeners

Tip

While CRUD provides many listeners, it’s definitely possible and recommended
that you add your own reusable listeners for your application needs

Listeners are the foundation for the extreme flexibility CRUD provides you
as an application developer.

The event system allows you to hook into the most important part of the
CRUD action flow and customize it to your unique application
needs.

The Anatomy Of A Listener

The listener system is simply the
Events System [http://book.cakephp.org/3.0/en/core-libraries/events.html] from
CakePHP, and all the official documentation and usage also applies to CRUD.

The CRUD event system uses two methods trigger() and on() to interface
the underlying CakePHP event system.

The only hard requirement for a CRUD listener is that it needs to either implement
the implementedEvents() method or extend \Crud\Listener\Base.

Below is the code for a simple CRUD listener.

In the next few sections we will walk through the code and explain how it works,
and what every single line of code does.

For each section, the relevant lines of code will be highlighted.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	<?php
namespace Crud\Listener;

class Example extends \Crud\Listener\BaseListener {

/**
 * Returns a list of all events that will fire in the lister during the
 * CRUD life-cycle.
 *
 * @return array
 */
 public function implementedEvents() {
 return [
 'Crud.beforeRender' => ['callable' => 'beforeRender']
];
 }

/**
 * Executed when Crud.beforeRender is emitted
 *
 * @param \Cake\Event\Event $event
 * @return void
 */
 public function beforeRender(Cake\Event\Event $event) {
 $this->_response()->header('X-Powered-By', 'CRUD 4.0');
 }

}

Class And Namespace

All built-in listeners in CRUD live in the Crud\Listener namespace.

All listeners in CRUD, even your own, should inherit from the
Crud\Listener\Base class.
This class is abstract and provides numerous auxiliary methods which can be
useful for you both as a developer and as an action creator.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	<?php
namespace Crud\Listener;

class Example extends \Crud\Listener\BaseListener {

/**
 * Returns a list of all events that will fire in the lister during the
 * CRUD life-cycle.
 *
 * @return array
 */
 public function implementedEvents() {
 return [
 'Crud.beforeRender' => ['callable' => 'beforeRender']
];
 }

/**
 * Executed when Crud.beforeRender is emitted
 *
 * @param \Cake\Event\Event $event
 * @return void
 */
 public function beforeRender(Cake\Event\Event $event) {
 $this->_response()->header('X-Powered-By', 'CRUD 4.0');
 }

}

Implemented Events

As documented in the CakePHP Events System [http://book.cakephp.org/3.0/en/core-libraries/events.html]
all listeners must contain a implementedEvents method.

In this example, we simply request that beforeRender in our class is executed
every time a Crud.beforeRender event is emitted.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	<?php
namespace Crud\Listener;

class Example extends \Crud\Listener\BaseListener {

/**
 * Returns a list of all events that will fire in the lister during the
 * CRUD life-cycle.
 *
 * @return array
 */
 public function implementedEvents() {
 return [
 'Crud.beforeRender' => ['callable' => 'beforeRender']
];
 }

/**
 * Executed when Crud.beforeRender is emitted
 *
 * @param \Cake\Event\Event $event
 * @return void
 */
 public function beforeRender(Cake\Event\Event $event) {
 $this->_response()->header('X-Powered-By', 'CRUD 4.0');
 }

}

Note

The Crud.beforeRender event is similar to the Controller and View event of the
same name, but Crud.beforeRender is called first, and can halt the entire
rendering process

The Callback

This method gets executed every time a Crud.beforeRender event is emitted
from within CRUD or by you as a developer.

When the event is emitted, we append a header to the client HTTP response named
X-Powered-By with the value CRUD 4.0.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	<?php
namespace Crud\Listener;

class Example extends \Crud\Listener\BaseListener {

/**
 * Returns a list of all events that will fire in the lister during the
 * CRUD life-cycle.
 *
 * @return array
 */
 public function implementedEvents() {
 return [
 'Crud.beforeRender' => ['callable' => 'beforeRender']
];
 }

/**
 * Executed when Crud.beforeRender is emitted
 *
 * @param \Cake\Event\Event $event
 * @return void
 */
 public function beforeRender(Cake\Event\Event $event) {
 $this->_response()->header('X-Powered-By', 'CRUD 4.0');
 }

}

More on listeners

	API
	Introduction

	Setup
	Routing

	Controller

	New CakeRequest detectors
	is(‘json’)

	is(‘xml’)

	is(‘api’)

	Default behavior

	Exception handler

	Request type enforcing

	Response format
	JSON

	XML

	Exception response format
	JSON

	XML

	HTTP POST (add)

	HTTP PUT (edit)

	HTTP DELETE (delete)

	Not Found (view / edit / delete)

	Invalid id (view / edit / delete)

	API Pagination
	Setup

	Output

	Configuration

	API Query Log
	Setup

	Output

	Redirect listener
	Setup

	Configuration
	Readers

	Adding your own reader

	Action defaults

	Add action

	Edit action

	Configuring your own redirect rules

	Related Models
	Introduction

	Configuring

	Events

	Search
	Introduction

	Setup
	Installation

	Controller

	Custom
	Example Controller

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Listeners

API

This listener allows you to easily create a JSON or XML Api built on top of Crud.

Introduction

The API listener depends on the RequestHandler to be loaded before Crud

[Please also see the CakePHP documentation on JSON and XML views]
(http://book.cakephp.org/2.0/en/views/json-and-xml-views.html#enabling-data-views-in-your-application)

Setup

Routing

You need to tell the Router to parse extensions else it won’t be able to
process and render json and xml URL extension

// config/routes.php
Router::extensions(['json', 'xml']);

Ensure this statement is used before connecting any routes.

Controller

Attach it on the fly in your controller beforeFilter, this is recommended if
you want to attach it only to specific controllers and actions

<?php
class SamplesController extends AppController {

 public function beforeFilter(\Cake\Event\Event $event) {
 parent::beforeFilter();
 $this->Crud->addListener('Crud.Api');
 }
}

Attach it using components array, this is recommended if you want to
attach it to all controllers, application wide

<?php
class AppController extends Controller {

 public $components = [
 'RequestHandler',
 'Crud.Crud' => [
 'actions' => ['Crud.Index', 'Crud.View'],
 'listeners' => ['Crud.Api']
]
];

}

New CakeRequest detectors

The Api Listener creates 3 new detectors in your CakeRequest object.

is(‘json’)

Checks if the extension of the request is .json or if the requester accepts
json as part of the HTTP accepts header

is(‘xml’)

Checks if the extension of the request is .xml or if the requester accepts
XML as part of the HTTP accepts header

is(‘api’)

Checking if the request is either is('json') or is('xml')

Default behavior

If the current request doesn’t evaluate is('api') to true, the listener
won’t do anything at all.

All it’s callbacks will simply return NULL and don’t get in your way.

Exception handler

The Api listener overrides the Exception.renderer for api requests,
so in case of an error, a standardized error will be returned, in either
json or xml - according to the API request type.

Request type enforcing

The API listener will try to enforce some best practices on how an API
should behave.

For a request to index and view the HTTP request type must be
HTTP GET - else an MethodNotAllowed exception will be raised.

For a request to add the HTTP request type must be HTTP POST -
else an MethodNotAllowed exception will be raised.

For a request to edit the HTTP request type must be HTTP PUT -
else an MethodNotAllowed exception will be raised.

For a request to delete the HTTP request type must be HTTP DELETE -
else an MethodNotAllowed exception will be raised.

Response format

The default response format for both XML and JSON is two root keys,
success and data.

It’s possible to add your own root keys simply by _serialize view var.

JSON

{
 "success": true,
 "data": {

 }
}

XML

<response>
 <success>1</success>
 <data></data>
</response>

Exception response format

The data.exception key is only returned if debug is > 0

JSON

{
 "success": false,
 "data": {
 "code": 500,
 "url": "/some/url.json",
 "name": "Some exception message",
 "exception": {
 "class": "CakeException",
 "code": 500,
 "message": "Some exception message",
 "trace": []
 }
 }
}

XML

<response>
 <success>0</success>
 <data>
 <code>500</code>
 <url>/some/url.json</url>
 <name>Some exception message</name>
 <exception>
 <class>CakeException</class>
 <code>500</code>
 <message>Some exception message</message>
 <trace></trace>
 <trace></trace>
 </exception>
 <queryLog/>
 </data>
</response>

HTTP POST (add)

success is based on the event->subject->success parameter from the
Add action.

If success is false a HTTP response code of 412 will be returned,
along with a list of validation errors from the model in the data property
of the response body.

If success is true a HTTP response code of 201 will be returned,
along with the id of the created record in the data property of the
response body.

HTTP PUT (edit)

success is based on the event->subject->success parameter from the
Edit action.

If success is false a HTTP response code of 412 will be returned,
along with a list of validation errors from the model in the data property
of the response body.

If success is true a HTTP response code of 200 will be returned
(even when the resource has not been updated).

HTTP DELETE (delete)

success is based on the event->subject->success parameter from
the Delete action.

If success is false a HTTP response code of 400 will be returned.

If success is true a HTTP response code of 200 will be returned,
along with empty data property in the response body.

Not Found (view / edit / delete)

In case an id is provided to a crud action and the id does not exist in
the database, a 404 NotFoundException` will be thrown.

Invalid id (view / edit / delete)

In case a ìd is provided to a crud action and the id is not valid
according to the database type a 500 BadRequestException will be thrown

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Listeners

API Pagination

Note

This feature requires the API listener to work.

This listener appends pagination information to the API responses that is contain
pagination information.

Setup

Attach this listener to your AppController components array if you want to make
it available for all your controllers, application wide.

<?php
class AppController extends \Cake\Controller\Controller {

 public $components = [
 'RequestHandler',
 'Crud.Crud' => [
 'listeners' => [
 'Crud.Api', // Required
 'Crud.ApiPagination'
]
];

}

Attach it on the fly in your controller beforeFilter if you want to limit
availability of the listener to specific controllers and actions.

<?php
class SamplesController extends AppController {

 public function beforeFilter(\Cake\Event\Event $event) {
 $this->Crud->addListener('Crud.Api'); // Required
 $this->Crud->addListener('Crud.ApiPagination');
 }

}

Output

Paginated results will include a new pagination element similar to the one
below:

{
 "success": true,
 "data":[

],
 "pagination":{
 "page_count": 13,
 "current_page": 1,
 "count": 25,
 "has_prev_page": false,
 "has_next_page": true
 }
}

Configuration

Configure this listener by setting the
[CakePHP Pagination](http://book.cakephp.org/3.0/en/controllers/components/pagination.html)
options directly to the query object.

public function index()
{
 $event->subject()->query->contain([
 'Comments' => function ($q) {
 return $q
 ->select(['id', 'name', 'description'])
 ->where([
 'Comments.approved' => true
]);
 }
]);
}

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Listeners

API Query Log

Note

This feature requires the API listener to work.

This listener appends query log information to the API responses

The listener will only append the queryLog key if debug is set to true.

Setup

Attach it on the fly in your controller beforeFilter, this is recommended if
you want to attach it only to specific controllers and actions

<?php
class SamplesController extends AppController {

 public function beforeFilter(\Cake\Event\Event $event) {
 $this->Crud->addListener('Crud.Api'); // Required
 $this->Crud->addListener('Crud.ApiQueryLog');
 }

}

Attach it using components array, this is recommended if you want to
attach it to all controllers, application wide

<?php
class SamplesController extends AppController {

 public $components = [
 'RequestHandler',
 'Crud.Crud' => [
 'listeners' => [
 'Crud.Api', // Required
 'Crud.ApiQueryLog'
]
];

}

Output

Paginated results will include a

{
 "success": true,
 "data": [

],
 "queryLog": {
 "default": {
 "log": [
 {
 "query": "SELECT SOMETHING FROM SOMEWHERE",
 "took": 2,
 "params": [

],
 "affected": 25,
 "numRows": 25
 },
 {
 "query": "SELECT SOMETHING FROM SOMEWHERE'",
 "params": [

],
 "affected": 1,
 "numRows": 1,
 "took": 0
 }
]
 }
 }
}

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Listeners

Redirect listener

Enable more complex redirect rules.

Setup

Attach it on the fly in your controller beforeFilter, this is recommended if
you want to attach it only to specific controllers and actions:

<?php
class SamplesController extends AppController {

 public function beforeFilter(\Cake\Event\Event $event) {
 $this->Crud->addListener('Crud.Redirect');

 parent::beforeFilter();
 }
}
?>

Attach it using components array, this is recommended if you want to
attach it to all controllers, application wide:

<?php
class SamplesController extends AppController {

 public $components = [
 'Crud.Crud' => [
 'actions' => ['index', 'view'],
 'listeners' => ['Crud.Redirect']
];

}
?>

Configuration

Readers

A reader is a closure [http://php.net/closure] that can access a field in an object through different means.

Below is a list of the build-in readers you can use:

	Name
	Pseudo code
	Description

	request.key
	$this->request->{$field}
	Access a property directly on the Request object

	request.data
	$this->request->data($field)
	Access a HTTP POST data field using Hash::get() compatible format

	request.query
	$this->request->query($field)
	Access a HTTP query argument using Hash::get() compatible format

	model.key
	$Model->{$field}
	Access a property directly on the Model instance

	model.data
	$Model->data[$field]
	Access a model data key using Hash::get() compatible format

	model.field
	$Model->field($field)
	Access a model key by going to the database and read the value

	subject.key
	$CrudSubject->{$key}
	Access a property directly on the event subject

Adding your own reader

Adding or overriding a reader is very simple.

The closure takes two arguments:

	CrudSubject $subject

	$key = null

<?php
class SamplesController extends AppController {

 public function beforeFilter(\Cake\Event\Event $event) {
 $listener = $this->Crud->listener('Redirect');
 $listener->reader($name, Closure $closure);

 // Example on a reader using Configure
 $listener->reader('configure.key', function(CrudSubject $subject, $key)) {
 return Configure::read($key);
 });

 parent::beforeFilter();
 }
}
?>

Action defaults

Below is the defaults provided by build-in Crud actions:

Add action

By default Add Crud Action always redirect to array('action' => 'index') on afterSave

	Name
	Reader
	Key
	Result
	Description

	post_add
	request.data
	_add
	array('action' => 'add')
	By providing _add as a post key, the user will be redirected back to the add action

	post_edit
	request.data
	_edit
	array('action' => 'edit', $id)
	By providing _edit as a post key, the user will be redirected to the edit action with the newly created ID as parameter

Edit action

By default Edit Crud Action always redirect to array('action' => 'index') on afterSave

	Name
	Reader
	Key
	Result
	Description

	post_add
	request.data
	_add
	array('action' => 'add')
	By providing _add as a post key, the user will be redirected back to the add action

	post_edit
	request.data
	_edit
	array('action' => 'edit', $id)
	By providing _edit as a post key, the user will be redirected to the edit action with the same ID as parameter as the current URL

Configuring your own redirect rules

It’s very simple to modify existing or add your own redirect rules:

<?php
class SamplesController extends AppController {

 public function beforeFilter(\Cake\Event\Event $event) {
 // Get all the redirect rules
 $rules = $this->Crud->action()->redirectConfig();

 // Get one named rule only
 $rule = $this->Crud->action()->redirectConfig('add');

 // Configure a redirect rule:
 //
 // if $_POST['_view'] is set then redirect to
 // 'view' action with the value of '$subject->id'
 $this->Crud->action()->redirectConfig('view',
 [
 'reader' => 'request.data', // Any reader from the list above
 'key' => '_view', // The key to check for, passed to the reader
 'url' => [// The url to redirect to
 'action' => 'view', // The final url will be '/view/$id'
 ['subject.key', 'id'] // If an array is encountered, it will be expanded the same was as 'reader'+'key'
]
]
);

 parent::beforeFilter();
 }
}
?>

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Listeners

Related Models

If you are used to bake or CakePHP scaffolding you might want to have some
control over the data it is sent to the view for filling select boxes for
associated models.

Introduction

CRUD can be configured to return the list of record for all
related models or just those you want to in a per-action basis.

By default all related model lists for main CRUD table instance
will be fetched, but only for add, edit and corresponding admin actions.

For instance if your Posts table in associated to Tags and Authors,
then for the aforementioned actions you will have in your view the $authors
and $tags variable containing the result of calling find(‘list’) on
each table.

Should you need more fine grain control over the lists fetched, you can
configure statically or use dynamic methods.

Configuring

Before you’re able to configure your relatedModels you need to load the listener.

<?php
class AppController extends Controller {

 public function initialize()
 {
 parent::initialize();
 $this->Crud->addListener('relatedModels', 'Crud.RelatedModels');
 }

You can enable and disable which model relations you want to have automatically
fetched very easily, as shown below.

If you set relatedModels to true all model relations will be fetched
automatically.

If you set relatedModels to an array, only the related models in that
array will be fetched automatically.

If you set relatedModels to false no model relations will be fetched
automatically.

<?php
class DemoController extends AppController {

 public $components = [
 'Crud.Crud' => [
 'actions' => [
 'add' => ['relatedModels' => ['Author']],
 'edit' => ['relatedModels' => ['Tag', 'Cms.Page']]
]
]
];

}

It’s possible to dynamically reconfigure the relatedModels listener

<?php
// This can be changed in beforeFilter and the controller action
public function beforeFilter(\Cake\Event\Event $event) {
 // Automatically executes find('list') on the User ($users) and Tag ($tags) tables
 $this->Crud->listener('relatedModels')->relatedModels(['User', 'Tag'], 'your_action');

 // Automatically executes find('list') on the User ($users) table
 $this->Crud->listener('relatedModels')->relatedModels(['User'], 'your_action');

 // Fetch related data from all table relations (default)
 $this->Crud->listener('relatedModels')->relatedModels(true);

 // Don't fetch any related data
 $this->Crud->listener('relatedModels')->relatedModels(false);

 // Get the current configuration
 $config = $this->Crud->listener('relatedModels')->relatedModels();
}

Events

If for any reason you need to alter the query or final results generated
by fetching related models lists, you can use the Crud.relatedModel event
to inject your own logic.

Crud.relatedModel will receive the following parameters in the event
subject, which can be altered on the fly before any result is fetched

	name The name of the relation

	viewVar The name of the variable when set to the view

	query The \Cake\ORM\Query object used for the find('list')

	association The \Cake\ORM\Association object

Example

<?php
class DemoController extends AppController {

 public function beforeFilter(\Cake\Event\Event $event) {
 parent::beforeFilter();

 $this->Crud->on('relatedModel', function(\Cake\Event\Event $event) {
 if ($event->subject->association->name() === 'Authors') {
 $event->subject->query->limit(3);
 $event->subject->query->where(['is_active' => true]);
 }
 });

 }

}

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Listeners

Search

This listener provides search capabilities for the Crud plugin.

Introduction

The Search listener depends on the FriendsOfCake repo search.

[Please also see the repo]
(https://github.com/FriendsOfCake/search)

Setup

Installation

You need to install FriendsOfCake/Search [https://github.com/FriendsOfCake/search] first.

Controller

Attach it on the fly in your controller beforeFilter, this is recommended if
you want to attach it only to specific controllers and actions:

<?php
class SamplesController extends AppController {

 public function beforeFilter(\Cake\Event\Event $event) {
 $this->Crud->addListener('Crud.Search');

 parent::beforeFilter();
 }
}
?>

Attach it using components array, this is recommended if you want to
attach it to all controllers, application wide:

<?php
class SamplesController extends AppController {

 public $components = [
 'Crud.Crud' => [
 'actions' => ['index', 'view'],
 'listeners' => ['Crud.Search']
];

}
?>

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

 	Listeners

Custom

Any class can be used as a CRUD Listener, even the controller.

Example Controller

We override the implementedEvents() method in the controller, and bind
the Crud.beforeFind event to the _beforeFind() method in the controller.

<?php
namespace app\Controller;

class BlogsController extends AppController {

 public function implementedEvents() {
 return parent::implementedEvents() + [
 'Crud.beforeFind' => '_beforeFind'
];
 }

 public function _beforeFind(\Cake\Event\Event $event) {

 }

}

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CRUD v4

Events

Events are the backbone of CRUD, and your primary gateway into customization of
CRUD and fitting it to your applications.

You can subscribe to events from almost everywhere, and in multiple ways.

Controller

implementedEvents

We override the implementedEvents() method in the controller, and bind
the Crud.beforeFind event to the _beforeFind() method in the controller.

When using this technique, you need to prefix all the event names with Crud..

Most of the other ways to listen for events do not need this, as it’s done
automatically.

<?php
namespace app\Controller;

class BlogsController extends AppController {

 public function implementedEvents() {
 return parent::implementedEvents() + ['Crud.beforeFind' => '_beforeFind'];
 }

 public function _beforeFind(\Cake\Event\Event $event) {

 }

}

Note

It’s important that the controller event method is public, since it’s called
from the CakePHP event manager, outside of the Controller scope.

The added _ prefix is there only to prevent it being executed as an controller
action.

Action

You can bind events directly in your controller actions, simply call the on()
method in CRUD and provide a callback.

The example below uses a closure for the callback, but everything that is
valid for call_user_func() can be used

public function view($id) {
 $this->Crud->on('beforeFind', function(\Cake\Event\Event $event) {
 // Will only execute for the view() action
 });

 return $this->Crud->execute();
}

Note

When implementing events in your controller actions, it’s important to
include return $this->Crud->execute(); - else CRUD will not process the
action.

This is functionality wise more or less the same as using an controller method instead.

The benefit of the controller method is that you can easily share it between two
actions, like showcased below

public function view($id) {
 $this->Crud->on('beforeFind', [$this, '_beforeFind']);
 return $this->Crud->execute();
}

public function admin_view($id) {
 $this->Crud->on('beforeFind', [$this, '_beforeFind']);
 return $this->Crud->execute();
}

public function _beforeFind(\Cake\Event\Event $event) {
 // Will execute for both view() and admin_view()
}

All CRUD Events

This is a full list of all events emitted from CRUD.

Each individual CRUD action contains the same documentation, but only the events
relevant for that action.

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

This event is emitted before calling Table::delete.

The Crud Subject contains the following keys:

	id The ID of the entity, from the URL

	item The Entity from the find() call.

To abort a delete() simply stop the event by calling
$event->stopPropagation().

Stop Delete

public function delete($id) {
 $this->Crud->on('beforeDelete', function(\Cake\Event\Event $event) {
 // Stop the delete event, the entity will not be deleted
 if ($event->subject->item->author !== 'admin') {
 $event->stopPropagation();
 }
 });

 return $this->Crud->execute();
}

Crud.afterDelete

This event is emitted after Table::delete() has been called.

The Crud Subject contains two keys:

	success if true the delete() call succeeded, false otherwise

	id The ID that was originally passed to the action and is usually the primary key of your model.

	item The record that was found in the database.

Check Success

public function delete($id) {
 $this->Crud->on('afterDelete', function(\Cake\Event\Event $event) {
 if (!$event->subject->success) {
 $this->log("Delete failed for entity $event->subject->id");
 }
 });

 return $this->Crud->execute();
}

Crud.beforeFind

The event is emitted before calling the find method in the table.

The Crud Subject contains the following keys:

	id The ID that was originally passed to the action and usually the primary key value of your table.

	repository An instance of the Repository (Table) which the query will be executed against.

	query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

This is the last place you can modify the query before it’s executed against the database.

Note

An example

Given the URL: /posts/view/10 the repository object will be an instance of PostsTable and the query
includes a WHERE condition with Posts.id = 10

After the event has emitted, the database query is executed with LIMIT 1.

If a record is found the Crud.afterFind event is emitted.

Warning

If no record is found in the database, the Crud.recordNotFound event is emitted instead of Crud.afterFind.

Add Conditions

public function delete($id) {
 $this->Crud->on('beforeFind', function(\Cake\Event\Event $event) {
 $event->subject->query->where(['author' => $this->Auth->user('id')]);
 });

 return $this->Crud->execute();
}

Crud.afterFind

After the query has been executed, and a record has been found this event is emitted.

The Crud Subject contains two keys:

	id The ID that was originally passed to the action and is usually the primary key of your model.

	entity The record that was found in the database.

Note

If an entity is not found, the RecordNotFound event is emitted instead.

Logging the Found Item

public function delete($id) {
 $this->Crud->on('afterFind', function(\Cake\Event\Event $event) {
 $this->log("Found item: $event->subject->entity->id in the database");
 });

 return $this->Crud->execute();
}

Crud.beforeSave

Note

Do not confuse this event with the beforeSave callback in the ORM layer

Called right before calling Table::save().

The Crud Subject contains the following keys:

	entity An entity object marshaled with the HTTP POST data from the request.

	saveMethod A string with the saveMethod.

	saveOptions An array with the saveOptions.

All modifications to these keys will be passed into the Table::$saveMethod.

Warning

After this event has been emitted, changes done through the $action->saveMethod() or $action->saveOptions()
methods will no longer affect the code, as the rest of the code uses the values from the Crud Subject

Crud.afterSave

Note

Do not confuse this event with the afterSave callback in the ORM layer.

This event is emitted right after the call to Table::save().

The Crud Subject contains the following keys:

	id The newly inserted ID. It’s only available if the call to Table::save() was successful.

	success indicates whether or not the Table::save() call succeed or not.

	created true if the record was created and false if the record was updated.

	entity An entity object marshaled with the HTTP POST data from the request and the save() logic.

Check Created Status

public function edit($id) {
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject->created) {
 $this->log("The entity was created");
 } else {
 $this->log("The entity was updated");
 }
 });

 return $this->Crud->execute();
}

Check Success Status

public function edit($id) {
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject->success) {
 $this->log("The entity was saved successfully");
 } else {
 $this->log("The entity was NOT saved successfully");
 }
 });

 return $this->Crud->execute();
}

Get Entity ID

public function add() {
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject->created) {
 $this->log("The entity was created with id: $event->subject->id");
 }
 });

 return $this->Crud->execute();
}

Crud.beforePaginate

This event is emitted before Controller::paginate() is called.

Add Conditions

public function index() {
 $this->Crud->on('beforePaginate', function(\Cake\Event\Event $event) {
 $this->paginate['conditions']['is_active'] = true;
 });

 return $this->Crud->execute();
}

Crud.afterPaginate

This event is emitted right after the call to Controller::paginate().

The entities property of the event object contains all the database records found in the pagination call.

Modify the Result

public function index() {
 $this->Crud->on('afterPaginate', function(\Cake\Event\Event $event) {
 foreach ($event->subject->entities as $entity) {
 // $entity is an entity
 }
 });

 return $this->Crud->execute();
}

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

	url The 1st argument to Controller::redirect().

	status The 2nd argument to Controller::redirect().

	exit The 3rd argument to Controller::redirect().

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

Crud.recordNotFound

Note

This event will throw an exception.

The default configuration will thrown an Cake\Error\NotFoundException which will yield a 404 response.

The event is triggered after a find did not find any records in the database.

You can modify the exception class thrown using CrudComponent::message method

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

	text The 1st argument to SessionComponent::setFlash.

	element The 2nd argument to SessionComponent::setFlash.

	params The 3rd argument to SessionComponent::setFlash.

	key The 4th argument to SessionComponent::setFlash.

	entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	CRUD v4

Unit Testing

To ease with unit testing of Crud Listeners and Crud Actions, it’s recommended
to use the proxy methods found in [CrudBaseObject]({{site.url}}/api/develop/class-CrudBaseObject.html).

These methods are much easier to mock than the full CrudComponent object.

They also allow you to just mock the methods you need for your specific test, rather than the big dependency nightmare the
CrudComponent can be in some cases.

Proxy methods

These methods are available in all CrudAction and CrudListener objects.

_crud()

Get the CrudComponent instance

$this->_crud()

_action($name)

Get an CrudAction object by it’s action name

$this->_action()
$this->_action($name)

_trigger($eventName, $data = [])

Trigger a Crud Event

$this->_trigger('beforeSave')
$this->_trigger('beforeSave', ['data' => 'keys'])
$this->_trigger('beforeSave', $this->_subject(['data' => 'keys']))

_listener($name)

Get a Listener by its name

$this->_listener('Api')

_subject($additional = [])

Create a Crud Subject - used in $this->_trigger

$this->_subject()
$this->_subject(['data' => 'keys'])

_session()

Get the Session Component instance

$this->_session()

_controller()

Get the controller for the current request

$this->_controller()

_request()

Get the current Cake\Network\Request for this HTTP Request

$this->_request()

_response()

Get the current Cake\Network\Response for this HTTP Request

$this->_response()

_entity()

Get the entity instance that is created from Controller::$modelClass

$this->_entity()

_table()

Get the table instance that is created from Controller::$modelClass

$this->_table()

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	CRUD v4

Index

 Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

 _partials/events/before_paginate.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.beforePaginate

This event is emitted before Controller::paginate() is called.

Add Conditions

public function index() {
 $this->Crud->on('beforePaginate', function(\Cake\Event\Event $event) {
 $this->paginate['conditions']['is_active'] = true;
 });

 return $this->Crud->execute();
}

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/record_not_found.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.recordNotFound

Note

This event will throw an exception.

The default configuration will thrown an Cake\Error\NotFoundException which will yield a 404 response.

The event is triggered after a find did not find any records in the database.

You can modify the exception class thrown using CrudComponent::message method

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/actions/configuration/serialize.html

 Navigation

 		
 index

 		CRUD v4 »

serialize

Note

This setting is only relevant if you use the API listener.

Note

The API listener will always enforce success and data to be part of the _serialize
array.

This method is intended to allow you to add additional keys to your API responses with ease. An example of this is the
API Query Log.

To get the current configured serialize keys call the serialize method without any arguments.

$this->Crud->action()->serialize();

To change the serialize keys, pass a string or an array as first argument.

If a string is passed, it will be cast to array automatically.

$this->Crud->action()->serialize(['my', 'extra', 'keys']);

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/before_lookup.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.beforeLookup

This event is emitted before Controller::paginate() is called inside the Lookup Action.

Add Conditions

public function lookup() {
 $this->Crud->on('beforeLookup', function(\Cake\Event\Event $event) {
 $this->paginate['conditions']['is_active'] = true;
 });

 return $this->Crud->execute();
}

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/after_delete.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.afterDelete

This event is emitted after Table::delete() has been called.

The Crud Subject contains two keys:

		success if true the delete() call succeeded, false otherwise

		id The ID that was originally passed to the action and is usually the primary key of your model.

		item The record that was found in the database.

Check Success

public function delete($id) {
 $this->Crud->on('afterDelete', function(\Cake\Event\Event $event) {
 if (!$event->subject->success) {
 $this->log("Delete failed for entity $event->subject->id");
 }
 });

 return $this->Crud->execute();
}

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/before_find.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.beforeFind

The event is emitted before calling the find method in the table.

The Crud Subject contains the following keys:

		id The ID that was originally passed to the action and usually the primary key value of your table.

		repository An instance of the Repository (Table) which the query will be executed against.

		query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

This is the last place you can modify the query before it’s executed against the database.

Note

An example

Given the URL: /posts/view/10 the repository object will be an instance of PostsTable and the query
includes a WHERE condition with Posts.id = 10

After the event has emitted, the database query is executed with LIMIT 1.

If a record is found the Crud.afterFind event is emitted.

Warning

If no record is found in the database, the Crud.recordNotFound event is emitted instead of Crud.afterFind.

Add Conditions

public function delete($id) {
 $this->Crud->on('beforeFind', function(\Cake\Event\Event $event) {
 $event->subject->query->where(['author' => $this->Auth->user('id')]);
 });

 return $this->Crud->execute();
}

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/startup.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.startup

Called after the Controller::beforeFilter() and before the Crud action.

It’s emitted from CrudComponent::startup() and thus is fired in the same cycle
as all Component::startup() events.

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/before_delete.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.beforeDelete

This event is emitted before calling Table::delete.

The Crud Subject contains the following keys:

		id The ID of the entity, from the URL

		item The Entity from the find() call.

To abort a delete() simply stop the event by calling
$event->stopPropagation().

Stop Delete

public function delete($id) {
 $this->Crud->on('beforeDelete', function(\Cake\Event\Event $event) {
 // Stop the delete event, the entity will not be deleted
 if ($event->subject->item->author !== 'admin') {
 $event->stopPropagation();
 }
 });

 return $this->Crud->execute();
}

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/after_bulk.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.afterBulk

This event is emitted after calling _bulk() on a Bulk Crud action.

The Crud Subject contains two keys:

		success if true the _bulk() call succeeded, false otherwise

		ids A list of ids of entities, from the request data

		repository An instance of the Repository (Table) which the query will be executed against.

		query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

Check Success

public function bulk($id) {
 $this->Crud->on('afterBulk', function(\Cake\Event\Event $event) {
 if (!$event->subject->success) {
 $this->log("Bulk action failed");
 }
 });

 return $this->Crud->execute();
}

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/before_render.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.beforeRender

Invoked right before the view will be rendered.

This is also before the controllers own beforeRender callback.

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/before_filter.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.beforeFilter

Triggered when a CrudAction is going to handle a CakePHP request.

It’s emitted from CrudComponent::beforeFilter and thus is fired in the same cycle as all Controller::beforeFilter events.

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/before_bulk.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.beforeBulk

This event is emitted before _bulk() is called on a Bulk Crud action.

The Crud Subject contains the following keys:

		ids A list of ids of entities, from the request data

		repository An instance of the Repository (Table) which the query will be executed against.

		query A Query object from the Repository where $PrimaryKey => $IdFromRequest is already added to the conditions.

To abort a bulk action, simply stop the event by calling
$event->stopPropagation().

Stop Bulk Action

public function bulk($id) {
 $this->Crud->on('beforeBulk', function(\Cake\Event\Event $event) {
 // Stop the bulk event, the action will not continue
 if ($event->subject->item->author !== 'admin') {
 $event->stopPropagation();
 }
 });

 return $this->Crud->execute();
}

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/before_save.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.beforeSave

Note

Do not confuse this event with the beforeSave callback in the ORM layer

Called right before calling Table::save().

The Crud Subject contains the following keys:

		entity An entity object marshaled with the HTTP POST data from the request.

		saveMethod A string with the saveMethod.

		saveOptions An array with the saveOptions.

All modifications to these keys will be passed into the Table::$saveMethod.

Warning

After this event has been emitted, changes done through the $action->saveMethod() or $action->saveOptions()
methods will no longer affect the code, as the rest of the code uses the values from the Crud Subject

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/after_lookup.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.afterLookup

This event is emitted right after the call to Controller::paginate() in the Lookup Action.

The entities property of the event object contains all the database records found in the pagination call.

Modify the Result

public function lookup() {
 $this->Crud->on('afterLookup', function(\Cake\Event\Event $event) {
 foreach ($event->subject->entities as $entity) {
 // $entity is an entity
 }
 });

 return $this->Crud->execute();
}

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/after_save.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.afterSave

Note

Do not confuse this event with the afterSave callback in the ORM layer.

This event is emitted right after the call to Table::save().

The Crud Subject contains the following keys:

		id The newly inserted ID. It’s only available if the call to Table::save() was successful.

		success indicates whether or not the Table::save() call succeed or not.

		created true if the record was created and false if the record was updated.

		entity An entity object marshaled with the HTTP POST data from the request and the save() logic.

Check Created Status

public function edit($id) {
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject->created) {
 $this->log("The entity was created");
 } else {
 $this->log("The entity was updated");
 }
 });

 return $this->Crud->execute();
}

Check Success Status

public function edit($id) {
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject->success) {
 $this->log("The entity was saved successfully");
 } else {
 $this->log("The entity was NOT saved successfully");
 }
 });

 return $this->Crud->execute();
}

Get Entity ID

public function add() {
 $this->Crud->on('afterSave', function(\Cake\Event\Event $event) {
 if ($event->subject->created) {
 $this->log("The entity was created with id: $event->subject->id");
 }
 });

 return $this->Crud->execute();
}

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		CRUD v4 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/before_redirect.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.beforeRedirect

Simple and event driven wrapper for Controller::redirect().

The Crud Subject contains the following keys:

		url The 1st argument to Controller::redirect().

		status The 2nd argument to Controller::redirect().

		exit The 3rd argument to Controller::redirect().

		entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to Controller::redirect().

The redirect $url can be changed on the fly either by posting a redirect_url field from your
form or by providing a redirect_url HTTP query key.

The default for most redirects are simply to return to the index() action.

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/set_flash.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.setFlash

Simple and event driven wrapper for SessionComponent::setFlash.

The Crud Subject contains the following keys:

		text The 1st argument to SessionComponent::setFlash.

		element The 2nd argument to SessionComponent::setFlash.

		params The 3rd argument to SessionComponent::setFlash.

		key The 4th argument to SessionComponent::setFlash.

		entity (Optional) The Entity from the previously emitted event.

All keys can be modified as you see fit, at the end of the event cycle they will be passed
directly to SessionComponent::setFlash.

Defaults are stored in the messages configuration array for each action.

If you do not want to use this feature, simply stop the event by calling it’s stopPropagation() method.

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/after_find.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.afterFind

After the query has been executed, and a record has been found this event is emitted.

The Crud Subject contains two keys:

		id The ID that was originally passed to the action and is usually the primary key of your model.

		entity The record that was found in the database.

Note

If an entity is not found, the RecordNotFound event is emitted instead.

Logging the Found Item

public function delete($id) {
 $this->Crud->on('afterFind', function(\Cake\Event\Event $event) {
 $this->log("Found item: $event->subject->entity->id in the database");
 });

 return $this->Crud->execute();
}

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/events/after_paginate.html

 Navigation

 		
 index

 		CRUD v4 »

Crud.afterPaginate

This event is emitted right after the call to Controller::paginate().

The entities property of the event object contains all the database records found in the pagination call.

Modify the Result

public function index() {
 $this->Crud->on('afterPaginate', function(\Cake\Event\Event $event) {
 foreach ($event->subject->entities as $entity) {
 // $entity is an entity
 }
 });

 return $this->Crud->execute();
}

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/down.png

_partials/actions/configuration/view_var.html

 Navigation

 		
 index

 		CRUD v4 »

viewVar

Note

This maps directly to the $key argument in Controller::set($key, $value)

Change the name of the variable which contains the result of a index or view action query result.

To get the current configured viewVar call the viewViar method without any arguments.

$this->Crud->action()->viewVar();

To change the viewVar, pass a string as first argument.

$this->Crud->action()->viewVar('items');

For Index Action the default is plural version of the controller name.

Having a controller named PostsController would mean that the viewVar would be posts by default.

For View Action the default is singular version of the controller name.

Having a controller named PostsController would mean that the viewVar would be post by default.

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/actions/configuration/find_method.html

 Navigation

 		
 index

 		CRUD v4 »

findMethod

The 1st parameter to Table::find() - the default value is all.

To get the current configured findMethod keys call the findMethod method without any arguments.

$this->Crud->action()->findMethod();

To change the findMethod value pass a string argument to the method

$this->Crud->action()->findMethod('my_custom_finder');

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/actions/configuration_intro.html

 Navigation

 		
 index

 		CRUD v4 »

Note

Before applying any configuration to an action it must be mapped first.

If the action has not been mapped an exception will be raised.

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/actions/configuration/save_options.html

 Navigation

 		
 index

 		CRUD v4 »

saveMethod

The method to execute on Table:: when saving an entity - the default value is save.

To get the current configured saveMethod keys call the saveMethod method without any arguments.

$this->Crud->action()->saveMethod();

To change the saveMethod value pass an string argument to the method

$this->Crud->action()->saveMethod('my_custom_save_method');

saveOptions

The 2nd parameter to Table::save() - the default value is ['validate' => true, 'atomic' => true].

To get the current configured saveOptions keys call the saveOptions method without any arguments.

$this->Crud->action()->saveOptions();

To change the saveOptions value pass an array argument to the method

$this->Crud->action()->saveOptions(['atomic' => false]);

Sometimes you need to change the accessible fields before you update your entity.

$this->Crud->action()->saveOptions(['accessibleFields' => ['role_id' => true]]);

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/actions/configuration/view.html

 Navigation

 		
 index

 		CRUD v4 »

view

Get or set the view file to render at the end of the request.

The view setting is passed directly and unmodified to Controller::render().

To get the current configured view call the view method without any arguments.

$this->Crud->action()->view();

To change the view to render, pass a string as first argument.

$this->Crud->action()->view('my_custom_view');

Note

If the first parameter is NULL - which is the default value - the normal CakePHP behavior will be used.

Warning

Due to the nature of this method, once a custom view has been set, it’s not possible to revert back to
the default behavior by calling ->view(null) as it will return the current configuration.

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/actions/configuration/related_models.html

 Navigation

 		
 index

 		CRUD v4 »

Related models

related_models

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

_partials/actions/configuration/enabled.html

 Navigation

 		
 index

 		CRUD v4 »

enabled

Test or modify if the Crud Action is enabled or not.

When a CrudAction is disabled, Crud will not handle any requests to the action, and CakePHP will raise the normal
\Cake\Error\MissingActionException exception if you haven’t implemented the action in your controller.

To test if an action is enabled, call the enabled method on the action.

$this->Crud->action()->enabled();

To disable an action, call the disable method on the action.

$this->Crud->action()->disable();

To enable an action, call the enable method on the action.

$this->Crud->action()->enable();

To disable or enable multiple actions at the same time, Crud Component provides helper methods.

The enable and disable method can take a string or an array, for easy mass-updating.

$this->Crud->enable('index');
$this->Crud->enable(['index', 'add']);

$this->Crud->disable('index');
$this->Crud->disable(['index', 'add']);

Note

These methods simply calls the enable and disable method in each Crud Action class, and do not provide any magic
other than mass updating.

Warning

While it’s possible to update the enabled property directly on an action using the config methods,
it’s not recommend, as important cleanup logic will not be applied if you use the config() method directly.

 © Copyright 2014, Christian Winther.
 Created using Sphinx 1.3.5.

